Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Dipraseodymium(III) pyroborate molybdate $(\mathrm{VI}), \mathrm{Pr}_{\mathbf{2}}\left(\mathrm{B}_{2} \mathrm{O}_{5}\right)\left(\mathrm{MoO}_{4}\right)$

Peter Held* and Petra Becker

Institut für Kristallographie, Universität zu Köln, Zülpicher Strasse 49b, D-50674 Köln, Germany
Correspondence e-mail: peter.held@uni-koeln.de

Received 1 April 2008; accepted 15 April 2008

Key indicators: single-crystal X-ray study; $T=291 \mathrm{~K}$; mean $\sigma(\mathrm{O}-\mathrm{B})=0.007 \AA$; R factor $=0.031 ; w R$ factor $=0.083$; data-to-parameter ratio $=17.0$.

Single crystals of triclinic $\mathrm{Pr}_{2}\left(\mathrm{~B}_{2} \mathrm{O}_{5}\right)\left(\mathrm{MoO}_{4}\right)$ were prepared from an incongruently melting flux in the system $\mathrm{Pr}_{2} \mathrm{O}_{3}-$ $\mathrm{MoO}_{3}-\mathrm{B}_{2} \mathrm{O}_{3}$ in a platinum crucible in an atmosphere of air. In the crystal structure, distorted edge-sharing $\left[\mathrm{PrO}_{8}\right]$ square antiprisms form a three-dimensional framework. These are further linked by isolated $\left[\mathrm{MoO}_{4}\right]$ tetrahedra and isolated pyroborate groups $\left[\mathrm{B}_{2} \mathrm{O}_{5}\right]$, the latter consisting of two independent trigonal $\left[\mathrm{BO}_{3}\right]$ groups sharing one O atom. The $\left[\mathrm{MoO}_{4}\right]$ tetrahedra and the $\left[\mathrm{B}_{2} \mathrm{O}_{5}\right]$ groups are arranged in alternating layers parallel to the $a b$ plane.

Related literature

A rough investigation of the ternary systems $R E_{2} \mathrm{O}_{3}-\mathrm{B}_{2} \mathrm{O}_{3}-$ $\mathrm{MoO}_{3}(R E=$ rare earth element) has been reported by Lysanova et al. (1983) and Dzhurinskii \& Lysanova (1998). X-ray powder diffraction data of $R E_{2}\left(\mathrm{~B}_{2} \mathrm{O}_{5}\right)\left(\mathrm{MoO}_{4}\right)$ compounds with $R E=\mathrm{Pr}, \mathrm{Nd}, \mathrm{Sm}, \mathrm{Eu}, \mathrm{Gd}$ and Tb were reported by Lysanova et al. (1983). Geometric parameters of $\left[\mathrm{BO}_{3}\right]$ groups were reviewed by Zobetz (1982).

Experimental

$$
\begin{aligned}
& \text { Crystal data } \\
& \mathrm{Pr}_{2}\left(\mathrm{~B}_{2} \mathrm{O}_{5}\right)\left(\mathrm{MoO}_{4}\right) \\
& M_{r}=543.38 \\
& \text { Triclinic, } P \overline{1} \\
& a=5.2806(5) \AA \\
& b=7.0278(5) \AA \\
& c=10.5824(9) \AA \\
& \alpha=74.557(6)^{\circ} \\
& \beta=76.307(7)^{\circ}
\end{aligned}
$$

Data collection

Enraf-Nonius CAD-4
diffractometer
Absorption correction: ψ scan (MolEN; Fair, 1990)
$T_{\text {min }}=0.296, T_{\text {max }}=0.999$
(expected range $=0.048-0.161$)
4733 measured reflections
2155 independent reflections 1983 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.019$
3 standard reflections every 100 reflections intensity decay: 1.7%

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.082$
$S=1.13$
2155 reflections

$$
\begin{aligned}
& 127 \text { parameters } \\
& \Delta \rho_{\max }=2.55 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.73 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected bond lengths (\AA).

Pr1-O4	2.370 (3)	$\mathrm{Pr} 2-\mathrm{O} 3^{\text {vii }}$	2.585 (3)
Pr1-O3 ${ }^{\text {i }}$	2.430 (3)	$\mathrm{Pr} 2-\mathrm{O} 1^{\text {viii }}$	2.585 (3)
Pr1-O1 ${ }^{\text {i }}$	2.450 (3)	$\mathrm{Pr} 2-\mathrm{O}^{\text {ix }}$	2.645 (4)
Pr1-O5 ${ }^{\text {ii }}$	2.461 (3)	Mo-O5	1.748 (3)
Pr1-O7	2.480 (3)	Mo-O7	1.748 (3)
Pr1-O2	2.529 (3)	Mo-O6	1.782 (4)
$\mathrm{Pr} 1-\mathrm{O} 2{ }^{\text {iii }}$	2.557 (3)	$\mathrm{Mo}-\mathrm{O} 2^{\text {x }}$	1.803 (3)
$\mathrm{Pr} 1-\mathrm{O}^{\text {iv }}$	2.610 (3)	B1-O8	1.345 (6)
Pr2-O8	2.364 (3)	B1-O4	1.370 (6)
$\mathrm{Pr} 2-\mathrm{O} 8^{\mathrm{v}}$	2.375 (3)	B1-O9	1.387 (6)
$\mathrm{Pr} 2-\mathrm{O} 4^{\text {vi }}$	2.456 (3)	$\mathrm{B} 2-\mathrm{O} 9^{\text {xi }}$	1.373 (6)
Pr2-O3	2.506 (3)	$\mathrm{B} 2-\mathrm{O} 1^{\text {xi }}$	1.378 (6)
Pr2-O1	2.513 (3)	B2-O3	1.384 (6)

Symmetry codes: (i) $x, y+1, z$; (ii) $-x+1,-y+1,-z-1$; (iii) $-x+1,-y,-z-1$; (iv) $x, y-1, z$; (v) $-x,-y-1,-z$; (vi) $-x+1,-y-1,-z$; (vii) $-x,-y-2,-z$; (viii) $-x+1,-y-2,-z ;$ (ix) $-x,-y,-z ;(\mathrm{x})-x,-y+1,-z-1$; (xi) $x-1, y, z$.

Data collection: MACH3 (Enraf-Nonius, 1993); cell refinement: MACH3; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 2002); software used to prepare material for publication: publCIF (Westrip, 2008).

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under project BE 2147/6-1.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2175).

References

Dowty, E. (2002). ATOMS. Shape Software, Kingsport, Tennessee, USA.
Dzhurinskii, B. F. \& Lysanova, G. V. (1998). Russ. J. Inorg. Chem. 43, 19311940.

Enraf-Nonius (1993). MACH3 Server Software. OpenVMS. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Lysanova, G. V., Dzhurinskii, B. F., Komova, M. G. \& Tananaev, I. V. (1983). Russ. J. Inorg. Chem. 28, 1344-1349.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2008). publCIF. In preparation.
Zobetz, E. (1982). Z. Kristallogr. 160, 81-92.

supplementary materials

Acta Cryst. (2008). E64, i28 [doi:10.1107/S1600536808010386]

Dipraseodymium(III) pyroborate molybdate(VI), $\operatorname{Pr}_{\mathbf{2}}\left(\mathbf{B}_{\mathbf{2}} \mathrm{O}_{5}\right)\left(\mathbf{M o O}_{4}\right)$

P. Held and P. Becker

Comment

The existence of several compounds in the systems $R E_{2} \mathrm{O}_{3}-\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{MoO}_{3}$ ($R E=$ rare earth element) has been studied by Lysanova et al. (1983) by means of X-ray powder diffraction data and was partly corroborated by Dzhurinskii \& Lysanova (1998). Among these pseudo-ternary compounds, rare earth pyroborate molybdates of the type $R E_{2}\left(\mathrm{~B}_{2} \mathrm{O}_{5}\right)\left(\mathrm{MoO}_{4}\right)$ were reported for $R E=\operatorname{Pr}-\mathrm{Tb}$ (excluding $P m$) (Lysanova et al., 1983), all with incongruent melting behaviour. However, no structural information about these compounds has been given so far. In the course of our investigations of the systems $R E_{2} \mathrm{O}_{3}-\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{MO}_{3}(M=\mathrm{Mo}, \mathrm{W})$ we grew single crystals of the Pr-compound $\operatorname{Pr}_{2}\left(\mathrm{~B}_{2} \mathrm{O}_{5}\right)\left(\mathrm{MoO}_{4}\right)$, (I), as a representative of the rare earth pyroborate molybdate series.

In the crystal structure of (I) the two symmetrically non-equivalent Pr atoms show a distinct eightfold coordination by oxygen atoms, both with a slightly distorted square antiprismatic coordination polyhedron, and with $\mathrm{Pr}-\mathrm{O}$ bond lengths ranging from 2.370 (3) \AA to 2.610 (3) \AA for $\operatorname{Pr} 1$, and from 2.364 (3) \AA to 2.645 (4) \AA for $\operatorname{Pr} 2$ (Fig. 2). The $\left[\operatorname{PrO} \mathrm{O}_{8}\right]$ polyhedra are connected via common edges, where $\operatorname{Pr} 2$ is connected to six neighbouring $\left[\mathrm{PrO}_{8}\right]$ polyhedra with $\mathrm{Pr}-\operatorname{Pr}$ distances ranging from 3.9237 (5) \AA to 4.1242 (5) \AA, while $\operatorname{Pr} 1$ is connected to only four $\left[\mathrm{PrO}_{8}\right]$ polyhedra with $\mathrm{Pr} — \operatorname{Pr}$ distances between 3.9702 (6) \AA and 4.1583 (6) \AA. From the different connection schemes of the two Pr atoms a three-dimensional framework of $\left[\mathrm{PrO}_{8}\right]$ polyhedra with interstitial voids results (Fig. 1). In these voids nearly undistorted and isolated [MoO_{4}] tetrahedra, that are arranged in layers parallel to the $a b$ plane are positioned (Fig. 1).

The two crystallographically different B atoms are threefold coordinated by O atoms. The two $\left[\mathrm{BO}_{3}\right]$ groups are linked by a common oxygen ligand O 9 (see Fig. 2), thus forming isolated pyroborate groups $\left[\mathrm{B}_{2} \mathrm{O}_{5}\right]$. The pyroborate groups are bent with an angle ($\mathrm{B} 1-\mathrm{O} 9-\mathrm{B} 2$) of $125.1(4)^{\circ}$, while the individual $\left[\mathrm{BO}_{3}\right]$ groups show no unusual distortions (Zobetz, 1982). The oxygen ligands of the pyroborate group (apart from the bridging oxygen O9, see Fig. 2) each belong either to two different $\left[\mathrm{PrO}_{8}\right]$ polyhedra (being simultaneously ligands of B 1) or to three different $[\mathrm{PrO} 8$] polyhedra (being simultaneously ligands of B 2). All $\left[\mathrm{B}_{2} \mathrm{O}_{5}\right]$ groups are arranged in double layers that extend parallel to the $a b$-plane and alternate with layers of $\left[\mathrm{MoO}_{4}\right]$ tetrahedra (see Fig. 1).

Experimental

Single crystals of (I) were obtained by growth from the melt. A homogenized powder mixture of $\operatorname{Pr}_{4} \mathrm{O}_{11}$ (99.9\%, Alfa Aesar), $\mathrm{B}_{2} \mathrm{O}_{3}\left(99.98 \%\right.$, Alfa Aesar) and $\mathrm{MoO}_{3}(99.95 \%$, Alfa Aesar) in a molar ratio of 1: 3.3立: 7 was heated in a covered platinum crucible in air atmosphere to 1423 K and subsequently cooled at a rate of $3 \mathrm{Kh}^{-1}$ to 1173 K . Transparent, light-green prismatic single crystals of the title compound were separated mechanically from the fine-grained praseodymium borate molybdate matrix.

supplementary materials

Refinement

The final difference Fourier map indicated a positive maximum at a distance of $0.76 \AA$ from $\operatorname{Pr} 1$ and a negative maximum at a distance of $0.85 \AA$ from the same atom.

Figures

Fig. 1. : View of the structure of (I) approximately along the a-axis, emphasizing coordination surroundings of the cations. Pr atoms are shown as large red spheres, Mo atoms as smaller orange spheres, and B atoms as small green spheres. O atoms are indicated by the corners of the coordination polyhedra and are not drawn.

Fig. 2. : Fraction of the structure of (I) with atomic labelling scheme in a projection approximately along the a-axis. The atoms are drawn as displacement ellipsoids at the 50% probability level. [Symmetry codes: (i) $x, y+1, z$; (ii) $-x+1,-y+1,-z-1$; (iii) $-x+1,-y$, (iv) $x, y-1$, $z ;-z-1$; (x) $-x,-y,-z$; (xii) $x+1, y, z$; (xiii) $x+1, y+1, z$; (xiv) $-x+1,-y-1,-z$; (xv) $x+1, y-$ $1, z$.]

Dipraseodymium(III) pyroborate molybdate(VI)

Crystal data

$\mathrm{Pr}_{2}\left(\mathrm{~B}_{2} \mathrm{O}_{5}\right)\left(\mathrm{MoO}_{4}\right)$
$M_{r}=543.38$
Triclinic, $P \overline{1}$
$a=5.2806(5) \AA$
$b=7.0278(5) \AA$
$c=10.5824(9) \AA$
$\alpha=74.557$ (6) ${ }^{\circ}$
$\beta=76.307(7)^{\circ}$
$\gamma=73.065(6)^{\circ}$
$V=356.69(5) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& F_{000}=484 \\
& D_{\mathrm{x}}=5.059 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo K } \alpha \text { radiation } \\
& \lambda=0.71073 \AA \\
& \text { Cell parameters from } 25 \text { reflections } \\
& \theta=20.8-24.2^{\circ} \\
& \mu=15.20 \mathrm{~mm}^{-1} \\
& T=291(2) \mathrm{K} \\
& \text { Prism, light green } \\
& 0.20 \times 0.15 \times 0.12 \mathrm{~mm}
\end{aligned}
$$

Data collection

Enraf-Nonius CAD-4
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=291(2) \mathrm{K}$
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(MolEN; Fair, 1990)

$$
\begin{aligned}
& R_{\text {int }}=0.019 \\
& \theta_{\max }=30.4^{\circ} \\
& \theta_{\min }=3.1^{\circ} \\
& h=-7 \rightarrow 7 \\
& k=-10 \rightarrow 10 \\
& l=-15 \rightarrow 15
\end{aligned}
$$

$T_{\min }=0.296, T_{\max }=0.999$
4733 measured reflections
2155 independent reflections
1983 reflections with $I>2 \sigma(I)$

3 standard reflections every 100 reflections
intensity decay: 1.7\%

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.082$
$S=1.13$

2155 reflections
127 parameters

Secondary atom site location: difference Fourier map
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0533 P)^{2}+1.1726 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2{F_{\mathrm{c}}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=2.55 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.73$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.0319 (13)

Primary atom site location: structure-invariant direct methods

Special details

Experimental. A suitable single-crystal was carefully selected under a polarizing microscope and mounted in a glass capillary.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Pr1	$0.37016(5)$	$0.07689(4)$	$-0.31461(2)$	$0.00706(11)$
Pr2	$0.15410(5)$	$-0.79427(4)$	$0.04666(2)$	$0.00693(11)$
Mo	$0.03514(8)$	$0.70782(6)$	$-0.41958(4)$	$0.00758(12)$
O7	$0.1449(8)$	$0.4427(5)$	$-0.3778(4)$	$0.0144(7)$
O5	$0.2335(7)$	$0.7903(6)$	$-0.5706(3)$	$0.0152(7)$
O6	$0.0805(7)$	$0.8248(6)$	$-0.2991(4)$	$0.0141(7)$
O2	$0.3079(7)$	$0.1829(5)$	$-0.5554(3)$	$0.0111(6)$
B1	$0.4573(10)$	$-0.4118(7)$	$-0.1373(5)$	$0.0077(8)$
O4	$0.4775(7)$	$-0.2184(5)$	$-0.1465(3)$	$0.0114(6)$
O8	$0.2350(7)$	$-0.4758(5)$	$-0.0732(3)$	$0.0114(6)$
O9	$0.6870(7)$	$-0.5435(5)$	$-0.1886(4)$	$0.0121(7)$
B2	$-0.2634(10)$	$-0.7520(8)$	$-0.1570(5)$	$0.0091(8)$
O1	$0.5437(7)$	$-0.8575(5)$	$-0.1392(3)$	$0.0094(6)$
O3	$-0.0094(7)$	$-0.8664(5)$	$-0.1355(3)$	$0.0086(6)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pr1	$0.00931(15)$	$0.00715(15)$	$0.00456(15)$	$-0.00225(10)$	$-0.00160(10)$	$-0.00032(10)$
Pr2	$0.00839(16)$	$0.00662(15)$	$0.00584(15)$	$-0.00215(10)$	$-0.00193(10)$	$-0.00046(9)$
Mo	$0.0094(2)$	$0.0072(2)$	$0.00587(19)$	$-0.00159(14)$	$-0.00209(14)$	$-0.00082(13)$
O7	$0.0190(18)$	$0.0082(15)$	$0.0112(15)$	$-0.0002(12)$	$-0.0023(14)$	$0.0025(12)$
O5	$0.0167(17)$	$0.0188(17)$	$0.0100(15)$	$-0.0069(14)$	$0.0023(13)$	$-0.0039(13)$
O6	$0.0165(17)$	$0.0179(17)$	$0.0109(15)$	$-0.0060(13)$	$-0.0036(13)$	$-0.0052(13)$
O2	$0.0110(15)$	$0.0136(16)$	$0.0096(15)$	$-0.0016(12)$	$-0.0034(12)$	$-0.0038(12)$
B1	$0.011(2)$	$0.008(2)$	$0.0034(19)$	$-0.0022(16)$	$-0.0003(16)$	$-0.0011(15)$
O4	$0.0159(16)$	$0.0096(15)$	$0.0101(15)$	$-0.0046(12)$	$-0.0044(13)$	$-0.0008(11)$
O8	$0.0093(15)$	$0.0086(14)$	$0.0130(16)$	$-0.0015(11)$	$0.0004(13)$	$0.0005(12)$
O9	$0.0120(16)$	$0.0075(15)$	$0.0142(17)$	$-0.0020(12)$	$0.0011(13)$	$-0.0012(12)$
B2	$0.009(2)$	$0.009(2)$	0.008	$-0.0028(16)$	$-0.0004(17)$	$-0.0010(16)$
O1	$0.0099(15)$	$0.0107(15)$	$0.0088(14)$	$-0.0036(12)$	$-0.0030(12)$	$-0.0017(11)$
O3	$0.0076(14)$	$0.0106(15)$	$0.0071(14)$	$-0.0025(11)$	$0.0007(11)$	$-0.0024(11)$

Geometric parameters ($\AA,{ }^{\circ}$)

Pr1-O4	2.370 (3)
$\mathrm{Pr} 1-\mathrm{O} 3^{\text {i }}$	2.430 (3)
Pr1-O1 ${ }^{\text {i }}$	2.450 (3)
Pr1-O5 ${ }^{\text {ii }}$	2.461 (3)
Pr1-O7	2.480 (3)
$\mathrm{Pr} 1-\mathrm{O} 2$	2.529 (3)
$\mathrm{Pr} 1-\mathrm{O} 2^{\text {iii }}$	2.557 (3)
Pr1-O6 ${ }^{\text {iv }}$	2.610 (3)
Pr1-Mo ${ }^{\text {v }}$	3.6714 (6)
Pr1—Pr2 ${ }^{\text {vi }}$	3.9702 (5)
$\operatorname{Pr} 1-\mathrm{Pr} 2{ }^{\text {i }}$	3.9893 (5)
$\mathrm{Pr} 1-\mathrm{Pr} 2{ }^{\text {vii }}$	4.0171 (5)
Pr2-O8	2.364 (3)
$\mathrm{Pr} 2-\mathrm{O} 8^{\text {vii }}$	2.375 (3)
$\mathrm{Pr} 2-\mathrm{O} 4^{\text {vi }}$	2.456 (3)
Pr2-O3	2.506 (3)
Pr2-O1	2.513 (3)
$\mathrm{Pr} 2-\mathrm{O} 3{ }^{\text {viii }}$	2.585 (3)
$\mathrm{O} 4-\mathrm{Pr} 1-\mathrm{O} 3^{\text {i }}$	77.59 (12)
$\mathrm{O} 4-\mathrm{Pr} 1-\mathrm{O1}{ }^{\text {i }}$	67.58 (11)
$\mathrm{O} 3{ }^{\mathrm{i}}-\mathrm{Pr} 1-\mathrm{O} 1^{\mathrm{i}}$	73.79 (11)
O4-Pr1-O5 ${ }^{\text {ii }}$	112.06 (12)
O3 ${ }^{\text {i }}-\mathrm{Pr} 1-\mathrm{O} 5^{\mathrm{ii}}$	139.81 (11)

$\mathrm{Pr} 2-\mathrm{O} 1^{\text {ix }}$	2.585 (3)
Pr2- $\mathrm{O6}^{\text {x }}$	2.645 (4)
Pr2-B2 ${ }^{\text {viii }}$	3.021 (5)
$\mathrm{Pr} 2-\mathrm{Pr} 2^{\text {vii }}$	3.9237 (6)
$\mathrm{Pr} 2-\mathrm{Pr} 1^{\text {vi }}$	3.9702 (5)
$\mathrm{Pr} 2-\mathrm{Pr} 1^{\text {iv }}$	3.9893 (5)
Mo-O5	1.748 (3)
Mo-O7	1.748 (3)
$\mathrm{Mo}-\mathrm{O} 6$	1.782 (4)
$\mathrm{Mo}-\mathrm{O}^{\text {v }}$	1.803 (3)
$\mathrm{Mo}-\mathrm{Pr} 1^{\mathrm{v}}$	3.6714 (6)
B1-O8	1.345 (6)
B1-O4	1.370 (6)
B1-O9	1.387 (6)
$\mathrm{B} 2-\mathrm{O} 9^{\mathrm{xi}}$	1.373 (6)
$\mathrm{B} 2-\mathrm{O} 1^{\mathrm{xi}}$	1.378 (6)
B2-O3	1.384 (6)
B2—Pr2 ${ }^{\text {viii }}$	3.021 (5)
$\mathrm{O} 4^{\mathrm{vi}}-\mathrm{Pr} 2-\mathrm{O} 1^{\text {ix }}$	64.22 (10)
$\mathrm{O} 3-\mathrm{Pr} 2-\mathrm{O} 1^{\text {ix }}$	102.94 (11)
$\mathrm{O} 1-\mathrm{Pr} 2-\mathrm{O} 1^{\text {ix }}$	75.10 (12)
$\mathrm{O} 3{ }^{\text {viii }}$ - $\mathrm{Pr} 2-\mathrm{O} 1^{\text {ix }}$	54.11 (11)
$\mathrm{O} 8-\mathrm{Pr} 2-\mathrm{O6}^{\mathrm{X}}$	117.87 (11)

sup-4

$\mathrm{O} 1-\mathrm{Pr} 1-\mathrm{O} 5^{\mathrm{ii}}$	74.69 (11)
O4-Pr1-O7	149.37 (12)
O3 ${ }^{\text {i }}-\mathrm{Pr} 1-\mathrm{O} 7$	75.46 (11)
O1 ${ }^{\text {i }}$ - $\mathrm{Pr} 1-\mathrm{O} 7$	90.93 (12)
O5 ${ }^{\text {ii }}-\mathrm{Pr} 1-\mathrm{O} 7$	80.77 (12)
O4-Pr1-O2	141.05 (11)
$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Pr} 1-\mathrm{O} 2$	121.14 (11)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Pr} 1-\mathrm{O} 2$	146.59 (11)
$\mathrm{O} 5^{\mathrm{ii}}-\mathrm{Pr} 1-\mathrm{O} 2$	76.77 (11)
$\mathrm{O} 7-\mathrm{Pr} 1-\mathrm{O} 2$	67.53 (11)
$\mathrm{O} 4-\mathrm{Pr} 1-\mathrm{O} 2{ }^{\text {iii }}$	76.63 (11)
$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Pr} 1-\mathrm{O} 2{ }^{\text {iii }}$	145.67 (11)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Pr} 1-\mathrm{O} 2^{\mathrm{iii}}$	115.72 (11)
$\mathrm{O} \mathrm{i}^{\mathrm{ii}}-\mathrm{Pr} 1-\mathrm{O} 2^{\text {iii }}$	71.93 (11)
O7-Pr1-O2 $2^{\text {iii }}$	133.79 (11)
$\mathrm{O} 2-\mathrm{Pr} 1-\mathrm{O} 2{ }^{\text {iii }}$	70.32 (12)
O4-Pr1-O6 ${ }^{\text {iv }}$	69.35 (11)
O3 ${ }^{\text {i }}-\mathrm{Pr} 1-\mathrm{O} 6^{\text {iv }}$	72.69 (11)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Pr} 1-\mathrm{O} 6^{\text {iv }}$	129.69 (11)
O5 ${ }^{\text {ii }}-\mathrm{Pr} 1-\mathrm{O} 6^{\text {iv }}$	147.48 (12)
O7-Pr1-O6 ${ }^{\text {iv }}$	115.17 (12)
$\mathrm{O} 2-\mathrm{Pr} 1-\mathrm{O}^{\text {iv }}$	83.51 (11)
$\mathrm{O} 2{ }^{\text {iiii }}-\mathrm{Pr} 1-\mathrm{O}^{\text {iv }}$	77.21 (11)
$\mathrm{O} 4-\mathrm{Pr} 1-\mathrm{Pr} 2^{\text {vi }}$	35.36 (8)
$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Pr} 1-\mathrm{Pr} 2{ }^{\text {vi }}$	89.53 (8)
O1 $1^{\text {i }} \ldots \mathrm{Pr} 1-\mathrm{Pr}^{\text {vi }}$	39.18 (8)
O5 ${ }^{\text {ii }}$ - $\mathrm{Pr} 1 — \mathrm{Pr} 2^{\mathrm{vi}}$	81.40 (9)
O7-Pr1—Pr2 ${ }^{\text {vi }}$	129.95 (9)
$\mathrm{O} 2-\mathrm{Pr} 1-\mathrm{Pr} 2^{\text {vi }}$	149.14 (8)
$\mathrm{O} 2{ }^{\text {iiii }}-\mathrm{Pr} 1-\mathrm{Pr} 2^{\mathrm{vi}}$	82.37 (8)
O6 ${ }^{\text {iv }}-\mathrm{Pr} 1-\mathrm{Pr} 2^{\text {vi }}$	104.66 (8)
Mo ${ }^{\text {v }}-\mathrm{Pr} 1-\mathrm{Pr}^{\text {vi }}$	173.822 (12)
O4-Pr1-Pr2 ${ }^{\text {i }}$	68.51 (8)
O3 ${ }^{\text {i }}-\mathrm{Pr} 1-\mathrm{Pr} 2^{\text {i }}$	36.74 (8)
O1 ${ }^{\text {i }}-\mathrm{Pr} 1-\mathrm{Pr} 2^{\text {i }}$	37.06 (8)
$\mathrm{O} 5^{\mathrm{ii}}-\mathrm{Pr} 1-\mathrm{Pr} 2^{\text {i }}$	108.19 (8)
O7-Pr1—Pr2 ${ }^{\text {i }}$	81.16 (8)
O2-Pr1—Pr2 ${ }^{\text {i }}$	147.30 (8)
$\mathrm{O} 2^{\text {iiii }}-\mathrm{Pr} 1-\mathrm{Pr} 2^{\text {i }}$	142.36 (8)
O6 ${ }^{\text {iv }}-\mathrm{Pr} 1-\mathrm{Pr} 2^{\text {i }}$	102.41 (8)
Mo ${ }^{\mathrm{v}}-\mathrm{Pr} 1-\mathrm{Pr} 2^{\text {i }}$	124.637 (12)

$\mathrm{O} 8^{\mathrm{vii}}-\mathrm{Pr} 2-\mathrm{O} 6^{\mathrm{x}}$	68.69 (12)
$\mathrm{O} 4^{\mathrm{vi}}-\mathrm{Pr} 2-\mathrm{O} 6^{\mathrm{x}}$	79.69 (11)
$\mathrm{O} 3-\mathrm{Pr} 2-\mathrm{O}^{\text {x }}$	126.73 (10)
$\mathrm{O} 1-\mathrm{Pr} 2-\mathrm{O} 6^{\mathrm{x}}$	154.52 (11)
$\mathrm{O} 3^{\text {viii }}$ - Pr2- $\mathrm{O}^{\text {x }}$	69.74 (10)
$\mathrm{O} 1^{\mathrm{ix}}$ - $\mathrm{Pr} 2-\mathrm{O} 6^{\mathrm{x}}$	82.67 (11)
O8-Pr2-Pr2 ${ }^{\text {vii }}$	34.21 (8)
$\mathrm{O} 8^{\text {vii }}-\mathrm{Pr} 2-\mathrm{Pr} 2^{\text {vii }}$	34.03 (8)
$\mathrm{O} 4^{\text {vi }}-\mathrm{Pr} 2-\mathrm{Pr} 2^{\text {vii }}$	97.53 (8)
O3-Pr2-Pr2 ${ }^{\text {vii }}$	93.69 (8)
O1—Pr2—Pr2 ${ }^{\text {vii }}$	103.65 (8)
$\mathrm{O} 3^{\text {viii }}-\mathrm{Pr} 2-\mathrm{Pr} 2^{\text {vii }}$	140.80 (7)
$\mathrm{O} 1^{\text {ix }}$ —Pr2—Pr2 ${ }^{\text {vii }}$	161.72 (7)
O6 ${ }^{\mathrm{x}}$ - $\mathrm{Pr} 2-\mathrm{Pr} 2^{\text {vii }}$	93.54 (8)
B2 ${ }^{\text {viii }}-\mathrm{Pr} 2 — \mathrm{Pr} 2^{\text {vii }}$	166.65 (10)
O8-Pr2-Pr1 ${ }^{\text {vi }}$	113.11 (9)
$\mathrm{O} 8^{\text {vii }} \mathrm{Pr} 2-\mathrm{Pr}^{\text {vi }}$	125.58 (9)
$\mathrm{O} 4^{\text {vi }}-\mathrm{Pr} 2-\mathrm{Pr} 1^{\text {vi }}$	33.96 (8)
O3-Pr2-Pr1 ${ }^{\text {vi }}$	139.70 (8)
O1-Pr2-Pr1 ${ }^{\text {vi }}$	90.73 (8)
O3 ${ }^{\text {viii }}$-Pr2—Pr1 ${ }^{\text {vi }}$	79.17 (7)
$\mathrm{O} 1^{\text {ix }}-\mathrm{Pr} 2-\mathrm{Pr} 1^{\mathrm{vi}}$	36.78 (7)
O6 ${ }^{\mathrm{x}}-\mathrm{Pr} 2-\mathrm{Pr}^{\text {vi }}$	63.84 (8)
B2 ${ }^{\text {viii }}$ - $\operatorname{Pr} 2-\operatorname{Pr} 1^{\text {vi }}$	57.28 (10)
Pr2 ${ }^{\text {vii }}$ - $\mathrm{Pr} 2-\mathrm{Pr} 1^{\text {vi }}$	126.063 (11)
O8-Pr2-Pr1 ${ }^{\text {iv }}$	82.46 (9)
O8 $8^{\text {vii }} \mathrm{Pr} 2 — \mathrm{Pr}^{\text {iv }}$	115.15 (9)
$\mathrm{O} 4^{\mathrm{vi}}-\mathrm{Pr} 2-\mathrm{Pr} 1^{\text {iv }}$	115.41 (8)
O3-Pr2-Pr1 ${ }^{\text {iv }}$	35.45 (7)
O1-Pr2-Pr1 ${ }^{\text {iv }}$	35.98 (7)
O3 ${ }^{\text {viii }}$ - $\mathrm{Pr} 2-\mathrm{Pr} 1^{\text {iv }}$	88.62 (7)
$\mathrm{O} 1^{\text {ix }}-\mathrm{Pr} 2-\mathrm{Pr} 1^{\text {iv }}$	89.26 (7)
O6 ${ }^{\mathrm{x}}-\mathrm{Pr} 2-\mathrm{Pr} 1^{\text {iv }}$	157.63 (7)
B2 ${ }^{\text {viii }}$ - $\mathrm{Pr} 2-\mathrm{Pr} 1^{\text {iv }}$	87.02 (10)
Pr2 $2^{\text {vii }}-\mathrm{Pr} 2-\operatorname{Pr} 1^{\text {iv }}$	100.262 (11)
$\operatorname{Pr} 1^{\text {vi }}-\mathrm{Pr} 2-\operatorname{Pr} 1^{\text {iv }}$	118.956 (9)
O5-Mo-O7	107.10 (17)
O5-Mo-O6	107.70 (16)
O7-Mo-O6	111.77 (17)
$\mathrm{O} 5-\mathrm{Mo}-\mathrm{O} 2^{\mathrm{v}}$	105.62 (17)
$\mathrm{O} 7-\mathrm{Mo}-\mathrm{O}^{\text {v }}$	118.20 (16)

$\operatorname{Pr} 2^{\text {vi }}-\mathrm{Pr} 1-\mathrm{Pr} 2^{\text {i }}$	61.044 (9)	$\mathrm{O} 6-\mathrm{Mo}-\mathrm{O}^{\text {v }}$	105.89 (16)
$\mathrm{O} 4-\mathrm{Pr} 1-\mathrm{Pr} 2^{\text {vii }}$	53.61 (8)	$\mathrm{Pr} 1^{1}-\mathrm{O} 6-\mathrm{Pr}^{\mathrm{x}}$	99.70 (12)
O3 ${ }^{\text {i }}$ - $\mathrm{Pr} 1-\mathrm{Pr} 2^{\text {vii }}$	38.13 (7)	$\mathrm{Mo}^{\mathrm{v}}-\mathrm{O} 2-\mathrm{Pr} 1$	114.85 (15)
$\mathrm{O} 1^{\text {i }}-\mathrm{Pr} 1-\mathrm{Pr} 2{ }^{\text {vii }}$	91.90 (8)	$\mathrm{Mo}^{\mathrm{v}}-\mathrm{O} 2-\mathrm{Pr} 1^{\text {iii }}$	122.00 (16)
O5 ${ }^{\text {iii }} \mathrm{Pr} 1-\mathrm{Pr} 2^{\mathrm{vii}}$	164.08 (9)	$\mathrm{Pr} 1-\mathrm{O} 2-\mathrm{Pr} 1^{1 i i}$	109.68 (12)
O7-Pr1—Pr2 ${ }^{\text {vii }}$	108.49 (8)	O8-B1-O4	122.1 (4)
$\mathrm{O} 2-\mathrm{Pr} 1-\mathrm{Pr} 2^{\text {vii }}$	118.48 (8)	O8-B1-09	121.5 (4)
$\mathrm{O} 2{ }^{\text {iii }}$ - $\mathrm{Pr} 1-\mathrm{Pr} 2^{\text {vii }}$	107.57 (8)	$\mathrm{O} 4-\mathrm{B} 1-\mathrm{O} 9$	116.2 (4)
O6 ${ }^{\text {iv }}-\mathrm{Pr} 1-\mathrm{Pr} 2^{\text {vii }}$	40.47 (8)	B1-O4-Pr1	129.0 (3)
$\mathrm{Mo}^{\mathrm{v}}-\mathrm{Pr} 1-\mathrm{Pr}^{\text {vii }}$	97.798 (12)	$\mathrm{B} 1-\mathrm{O} 4-\mathrm{Pr} 2^{\text {vi }}$	113.9 (3)
$\mathrm{Pr} 2^{\text {vi }}-\mathrm{Pr} 1-\mathrm{Pr} 2^{\text {vii }}$	82.769 (10)	$\mathrm{Pr} 1-\mathrm{O} 4-\mathrm{Pr} 2^{\text {vi }}$	110.68 (12)
$\operatorname{Pr} 2^{\text {i }}$ - $\operatorname{Pr} 1 —$ Pr2 ${ }^{\text {vii }}$	62.010 (9)	B1-O8-Pr2	134.1 (3)
O8-Pr2-O8 $8^{\text {vii }}$	68.24 (13)	B1-O8-Pr2 ${ }^{\text {vii }}$	113.4 (3)
O8-Pr2-O4 $4^{\text {vi }}$	79.16 (11)	Pr2-O8-Pr2 ${ }^{\text {vii }}$	111.76 (13)
$\mathrm{O} 8^{\text {vii }}-\mathrm{Pr} 2-\mathrm{O} 4^{\text {vi }}$	113.81 (11)	$\mathrm{B} 2{ }^{\text {xii }}-\mathrm{O} 9-\mathrm{B} 1$	125.1 (4)
O8-Pr2-O3	95.79 (11)	$\mathrm{O} 9^{\mathrm{xi}}-\mathrm{B} 2-\mathrm{O} 1^{\mathrm{xi}}$	123.8 (4)
$\mathrm{O} 8{ }^{\text {vii }}-\mathrm{Pr} 2-\mathrm{O} 3$	90.33 (12)	$\mathrm{O} 9^{\mathrm{xi}}-\mathrm{B} 2-\mathrm{O} 3$	119.3 (4)
$\mathrm{O} 4{ }^{\text {vi }}-\mathrm{Pr} 2-\mathrm{O} 3$	150.59 (11)	$\mathrm{O} 1^{\text {xi }}-\mathrm{B} 2-\mathrm{O} 3$	116.8 (4)
O8-Pr2-O1	72.10 (11)	$\mathrm{Pr1}{ }^{\text {iv }}-\mathrm{O} 1-\mathrm{Pr} 2$	106.97 (12)
$\mathrm{O} 8^{\text {vii }} \mathrm{Pr} 2-\mathrm{O} 1$	134.09 (11)	$\mathrm{B} 2{ }^{\text {xii }}-\mathrm{O} 1-\mathrm{Pr} 2^{\mathrm{ix}}$	94.4 (3)
$\mathrm{O} 4{ }^{\text {vi }}-\mathrm{Pr} 2-\mathrm{O} 1$	79.52 (11)	$\mathrm{Pr}^{\text {iv }}-\mathrm{O} 1-\mathrm{Pr} 2^{\mathrm{ix}}$	104.05 (12)
$\mathrm{O} 3-\mathrm{Pr} 2-\mathrm{O} 1$	71.43 (11)	$\mathrm{Pr} 2-\mathrm{O} 1-\mathrm{Pr} 2^{\text {ix }}$	104.90 (12)
O8-Pr2-O3 ${ }^{\text {viii }}$	167.27 (12)	$\mathrm{B} 2-\mathrm{O} 3-\mathrm{Pr1}{ }^{\text {iv }}$	123.2 (3)
$\mathrm{O} 8^{\text {vii }}-\mathrm{Pr} 2-\mathrm{O} 3^{\text {viii }}$	108.01 (11)	$\mathrm{B} 2-\mathrm{O} 3-\mathrm{Pr} 2$	114.9 (3)
$\mathrm{O} 4{ }^{\text {vi }}-\mathrm{Pr} 2-\mathrm{O} 3^{\text {viii }}$	113.02 (11)	Pr1 ${ }^{\text {iv }}-\mathrm{O} 3-\mathrm{Pr} 2$	107.81 (12)
$\mathrm{O} 3-\mathrm{Pr} 2-\mathrm{O} 3^{\text {viii }}$	71.81 (12)	B2-O3-Pr2 ${ }^{\text {viii }}$	94.2 (3)
$\mathrm{O} 1-\mathrm{Pr} 2-\mathrm{O} 3^{\text {viii }}$	105.54 (10)	Pr1 ${ }^{\text {iv }}-\mathrm{O} 3-\mathrm{Pr} 2^{\text {viii }}$	106.39 (12)
O8-Pr2-O1 ${ }^{\text {ix }}$	134.34 (11)	$\mathrm{Pr} 2-\mathrm{O} 3-\mathrm{Pr} 2^{\text {viii }}$	108.19 (12)
$\mathrm{O} 8^{\text {vii }} \mathrm{Pr} 2-\mathrm{O} 1^{\text {ix }}$	150.80 (11)		

Fig. 1

Fig. 2

